(Corresponding author denoted by *; Undergraduate denoted by §)
Independent:
17. Tao, S.; Yang, E. J.; Zong, G.; Mou, P. K.; Ren, G.; Pu, Y.; Chen, L.; Kwon, H. J.; Zhou, J.; Hu, Z.; Khosravi, A.; Zhang, Q.; Du, Y.;*, Shi, W. Q.;* Shim, J. S.* “ER translocon inhibitor ipomoeassin F inhibits triple-negative breast cancer growth via blocking ER molecular chaperones”, Int. J. Biol. Sci. 2023, 19, 4020–4035. (open access)
16. Hsieh, L. T.-H.; Hall, B. S.; Newcombe, J.; Mendum, T. A.; Umrania, Y.; Deery, M. J.; Shi, W. Q.; Salguero, F. J.; Simmonds, R. E.* “Mycolactone causes catastrophic Sec61-dependent loss of the endothelial glycocalyx and basement membrane: a new indirect mechanism driving tissue necrosis in Mycobacterium ulcerans infection” eLife, 2023, 12:RP86931. (open access)
15. Itskanov, S.; Wang, L.; Junne, T.; Sheriff, R.; Xiao, L.; Blanchard, N.; Shi, W. Q.; Forsyth, C.; Hoepfner, D.; Spiess, M.; Park, E.* “A common mechanism of Sec61 translocon inhibition by small molecules” Nat. Chem. Biol. 2023, 19, 1063–1071. (https://doi.org/10.1038/s41589-023-01337-y)
14. O’Keefe, S.*,†; Bhadra, P.†; Duah, K. B.†; Zong, G.†; Tenay, L.; Andrews, L. E.§; Schneider, H.§; Anderson, A.§; Hu, Z.; Aljewari, H. S.; Hall, B. S.; Simmonds, R. E.; Helms, V.*; High, S*; Shi, W. Q.* “Synthesis, biological evaluation and docking studies of ring-opened analogues of ipomoeassin F”, Molecules 2022, 27, 4419. († Equal contribution) (open access)
13. Leznicki, P.;* Schneider, H.§; Harvey, J.§; Shi, W. Q.; High, S.* “Co-translational biogenesis of lipid droplet integral membrane proteins”, J. Cell Sci.open access)
, 135, jcs259220. (12. O’Keefe, S.; Zong, G.; Duah, K. B.; Andrews, L. E.§; Shi, W. Q.; High, S.* “An alternative pathway for membrane protein biogenesis at the endoplasmic reticulum”, Commun. Biol.open access)
, 4, 828. (11. Roboti, P.; O’Keefe, S.; Duah, K. B.; Shi, W. Q.; High, S.* “Ipomoessin-F disrupts multiple aspects of secretory protein biogenesis”, Sci. Rep.open access)
, 11, 11562. (10. O’Keefe, S.; Roboti, P.; Duah, K. B.; Zong, G.; Schneider, H.§; Shi, W. Q.; High, S.* “Ipomoeassin-F inhibits the in vitro biogenesis of the SARS-CoV-2 spike protein and its host cell membrane receptor”, J. Cell Sci.open access)
, 134, jcs257758. (9. Zong, G.; Hu, Z.; Duah, K. B.; Andrews, L. E.§; Zhou, J.; O’Keefe, S.; Whisenhunt, L.; Shim, J. S.; Du, Y.; High, S.; Shi, W. Q.* “Ring-expansion leads to a more potent analogue of ipomoeassin F”, J. Org. Chem. 2020, 85, 16226–16235. (open access)
8. Steinberg, R.; Origi, A.; Natriashvili, A.; Sarmah, P.; Licheva, M.; Walker, P. M.§; Kraft, C.; High, S.; Luirink, J.; Shi, W. Q.; Helmstädter, M.; Ulbrich, M. H.; and Koch, H.-G.* “Post-translational insertion of small membrane proteins by the bacterial signal recognition particle”, PLoS Biol. published September 30, 2020. (open access)
7. Zong, G.†; Hu, Z.†; O’Keefe, S.;# Tranter, D.;# Iannotti, M. J.;# Baron, L.;# Hall, B.;# Corfield, K.;# Paatero, A.; Henderson, M. J.;# Roboti, P.;# Zhou, J.; Sun, X.; Govindarajan, M.; Rohde, J.; Blanchard, N.; Simmonds, R.;* Inglese, J.;* Du, Y.;* Demangel, C.;* High, S.;* Paavilainen, V. O.;* Shi, W. Q.* “Ipomoeassin F binds Sec61α to inhibit protein translocation”, J. Am. Chem. Soc. 2019, 141, 8450–8461. (†, # Equal contribution) (open access)
6. Kearney, S. E.; Zahoránszky-Kőhalmi, G.; Brimacombe, K. R.; Henderson, M. J.; Lynch, C.; Zhao, T.; … Shi, W.; … Hall, M. D.;* Xia, M.; Guha, R.; Rohde, J. M.* “Canvass: A Crowd-Sourced, Natural Product Screening Library for Exploring Biological Space”, ACS Cent. Sci. 2018, 4, 1727–1741. (open access)
5. Zong, G.; Sun, X.; Bhakta, R.§; Whisenhunt, L.; Hu, Z.; Wang, F.; Shi, W. Q.* “New insights into structure–activity relationship of ipomoeassin F from its bioisosteric 5-oxa/aza analogues”, Eur. J. Med. Chem. 2018, 144, 751–757. (open access)
4. Zong, G.†; Hirsch, M.†; Mondrik, C.§; Hu, Z.; Shi, W. Q.* “Design, synthesis and biological evaluation of fucose-truncated monosaccharide analogues of ipomoeassin F”, Bioorg. Med. Chem. Lett. 2017, 27, 2752–2756. († Equal contribution) (open access)
3. Zong, G.; Whisenhunt, L.; Hu, Z.; Shi, W. Q.* “Synergistic contribution of tiglate and cinnamate to cytotoxicity of ipomoeassin F”, J. Org. Chem. 2017, 82, 4977−4985. (open access)
2. Zong, G.; Aljewari, H.; Hu, Z.; Shi, W. Q.* “Revealing the pharmacophore of ipomoeassin F through molecular editing”, Org. Lett. 2016, 18, 1674−1677. (open access)
1. Zong, G.; Barber, E.; Aljewari, H.; Zhou, J.; Hu, Z.; Du, Y.; Shi, W. Q.* “Total synthesis and biological evaluation of ipomoeassin F and its unnatural 11R-epimer” J. Org. Chem. 2015, 80, 9279−9291. (open access)
Graduate and Postdoctoral Work:
20. Li, Y., Pasunooti, K., Peng, H.; Li, R.-J., Shi, W. Q., Liu, W., Cheng, Z.; Head, S., Liu, J.* “Design and Synthesis of Tetrazole- and Pyridine-Containing Itraconazole Analogs as Potent Angiogenesis Inhibitors”, ACS Med. Chem. Lett. 2020, 6, 1111–1117.
19. Li, Y., Pasunooti, K., Li, R.-J., Liu, W., Head, S., Shi, W., Liu, J.* “Novel Tetrazole-containing Analogs of Itraconazole as Potent Anti-angiogenic Agents with Reduced CYP3A4 Inhibition”, J. Med. Chem. 2018, 61, 11158–11168.
18. Bauer, L., Ferla, S., Head, S. A., Bhat, S., Pasunooti, K. K., Shi, W. Q., Albulescu, L., Liu, J. O., Brancale, A., van Kuppeveld, F. J.M., Strating, J. R.P.M.* “Structure-activity relationship study of itraconazole, a broad-range inhibitor of picornavirus replication that targets oxysterol-binding protein (OSBP)”, Antiviral Res. 2018, 156, 55–63.
17. Head, S.; Shi, W. Q.; Yang, E. J.; Nacev, B. A.; Hong, S. Y.; Pasunooti, K.; Li, R. J.; Shim, J. S.; Liu, J. O.* “Simultaneous targeting of NPC1 and VDAC1 by itraconazole leads to synergistic inhibition of mTOR signaling and angiogenesis”, ACS Chem. Biol. 2017, 22, 174–182. (open access)
16. Shim, J. S.; Li, R.; Bumpus, N. N.; Head, S. A.; Kumar, K.; Shi, W.; Liu, J. O.* “Divergence of anti-angiogenic activity and hepatotoxicity of different stereoisomers of itraconazole”, Clin. Cancer Res. 2016, 22, 2709–2720.
15. Head, S.; Shi, W.; Zhao, L.; Gorshkov, K.; Pasunooti, K.; Chen, Y.; Deng, Z,; Li, R.; Shim, J. S.; Tan, W.; Hartung, T.; Zhang, J.; Zhao, Y.; Colombini, M.; Liu, J. O.* “The antifungal drug itraconazole targets VDAC1 to modulate the AMPK/mTOR signaling axis in endothelial cells”, Proc. Natl. Acad. Sci. U.S.A. 2015, 112, E7276–7285. (open access)
14. Peng, C.-C.; Shi, W.; Lutz, J. D.; Kunze, K. L.; Liu, J. O.; Nelson, W. L.; Isoherranen, N.* “Stereospecific metabolism of itraconazole by CYP3A4: a new metabolic pathway of dioxolane ring scission for azole antifungals” Drug. Metab. Dispos. 2012, 40, 426–435.
13. Shi, W.; Nacev, B. A.; Aftab, B.; Head, S.; Rudin, C. M.; Liu, J. O.* “Itraconazole side chain analogs: structure–activity relationship studies for inhibition of endothelial cell proliferation, vascular endothelial growth factor receptor 2 (VEGFR2) glycosylation, and Hedgehog signaling” J. Med. Chem. 2011, 54, 7363–7374. (open access)
12. Shi, W.; Lowary, T. L.* “Effect of carbohydrate amino group modifications on the cytotoxicity of glycosylated 2-phenyl-benzo[b]thiophenes and 2-phenyl-benzo[b]furans” Bioorg. Med. Chem. Lett. 2011, 21, 2591–2596.
11. Shi, W.; Lowary, T. L.* “Structure–activity relationships in glycosylated 2-phenyl-indoles, 2-phenyl-benzo[b]thiophenes and 2-phenyl-benzo[b]furans as DNA binding and potential anti-tumor agents” Bioorg. Med. Chem. 2011, 19, 1779–1789.
10. Shi, W.; Marcus, S. L.; Lowary, T. L.* “Cytotoxicity and topoisomerase I/II inhibition of glycosylated 2-phenyl-indoles, 2-phenyl-benzo[b]thiophenes and 2-phenyl-benzo[b]furans” Bioorg. Med. Chem. 2011, 19, 603–612.
9. Shi, W.; Nacev, B. A.; Bhat, S.; Liu, J. O.* “Impact of absolute stereochemistry on the antiangiogenic and antifungal activities of itraconazole” ACS Med. Chem. Lett. 2010, 1, 155–159. (open access)
8. Yang, G.; Tran, H.; Fan, E.; Shi, W.; Lowary, T. L.; Xu, Y.* “Determination of the absolute configurations of synthetic daunorubicin analogues using vibrational circular dichroism spectroscopy and density functional theory” Chirality, 2010, 22, 734–743.
7. Shi, W.; Marcus, S. L.; Lowary, T. L.* “Synthesis and antibacterial activity of aminosugar-functionalized intercalating agents” Carbohydr. Res. 2010, 345, 10–22.
6. Shi, W.; Coleman, R. S.; Lowary, T. L.* “Synthesis and DNA-binding affinity studies of glycosylated intercalators designed as functional mimics of the anthracycline antibiotics” Org. Biomol. Chem. 2009, 7, 3709–3722.
5. Fan, E.; Shi, W.; Lowary, T. L.* “Synthesis of daunorubicin analogs containing truncated aromatic cores and unnatural monosaccharide residues” J. Org. Chem. 2007, 72, 2917–2928.
4. Ridgway, K. M.§; Shi, W.; Lin, S.-J.; Palcic, M. M.; Lowary, T. L.* “Chemical and chemoenzymatic synthesis of a trisaccharide fragment of Tsukamurella Paurometabola lipoarabinomannan” Can J. Chem. 2006, 84, 642–649.
3. Luu, T.; Shi, W.; Lowary, T. L.*; Tykwinski, R. R.* “A divergent synthesis of triyne natural products and glycosylated analogues using a carbenoid rearrangement” Synthesis 2005, 3167–3178.
2. Shi, W.; Qian, X.;* Zhang, R.; Song, G. “Synthesis and quantitative structure–activity relationships of new 2,5-disubstituted-1,3,4-oxadiazoles” J. Agric. Food Chem. 2001, 49, 124–130.
1. Shi, W.; Qian, X.;* Song, G.; Zhang, R.; Li, R. “Syntheses and insecticidal activities of novel 2-fluorophenyl-5-aryl/cyclopropyl-1,3,4-oxadiazoles” J. Fluorine Chem. 2000, 106, 173–179.